

基于二维光子晶体的宽带高吸收太阳能吸收器

孙大伟,李长红*,易凌俊,王再鹏

青岛大学电子信息学院,山东 青岛 266071

摘要 具有宽带高吸收特性的吸收器是太阳能利用的关键。设计了一种含有抗反射层的基于二维光子晶体结构 的太阳能吸收器,其中砷化镓(GaAs)作为吸收介质,被填充到具有四方晶格结构的二维光子晶体的钨(W)基底圆 形空腔中。采用有限元法进行了模拟计算分析,结果表明,在 300~2500 nm 的波长范围内,吸收器的平均吸收率 为 92.5%,有效吸收率高达 94.9%,入射仰角为 50°时,有效吸收率仍有 90.13%。该结构具有全太阳光谱高吸收、 偏振不敏感和广角吸收等特点。研究结果为高性能太阳能吸收器的设计提供了参考。

关键词 材料;太阳能吸收器;二维光子晶体;抗反射膜;吸收谱;全太阳光谱
 中图分类号 O436 文献标志码 A doi: 14

doi: 10.3788/AOS202141.0516002

High Absorption Broadband Solar Energy Absorber Based on Two-Dimensional Photonic Crystal

Sun Dawei, Li Changhong^{*}, Yi Lingjun, Wang Zaipeng The College of Electronic Information, Qingdao University, Qingdao, Shandong 266071, China

Abstract The absorber with broadband and high absorption is the key for the utilization of solar energy. We designed a solar absorber based on a two-dimensional photonic crystal structure including an antireflective layer, in which Gallium arsenide (GaAs) is used as the absorbing medium and filled in the tungsten (W)-based circular empty cavity of two-dimensional photonic crystal with tetragonal lattice. The finite element method is used for the simulation and calculation, and the results show that in the wavelength range of 300-2500 nm, the average absorptivity of the absorber is 92.5% and the effective absorptivity is up to 94.9%. Moreover, the effective absorptivity of the absorber is 90.13% when the incident angle is 50°. The proposed structure has the characteristics of high absorption in the full solar spectrum, polarization-insensitivity and wide-angle absorption. These research results can provide a certain reference for the high-performance solar absorber.

Key words materials; solar absorber; two-dimensional photonic crystal; antireflection film; absorption spectrum; full solar spectrum

OCIS codes 160.5298; 350.6050; 310.1210; 300.1030

1引言

太阳能吸收器是太阳能利用过程中的关键器件,它吸收有效工作波长的光照,并将光能转化为热能、电能或者其他形式的能量^[1]。提高吸收器的吸收能力是促进太阳能利用的有效方式。提高太阳能吸收器的吸收能力主要有两个途径:增大吸收带宽

和提高太阳辐射能力较强区域内的吸收率。那么, 理想的吸收器应具备全太阳光谱高吸收能力。研究 者采用多层材料薄膜构建了一维光子晶体(1D-PC) 结构的太阳能吸收器,有效提高了吸收率^[2-3]。Luo 等^[4]设计的由多层二氧化钛(TiO₂)和硅(Si) 堆叠 而成的光子晶体,可以实现全向吸收,吸收率接近 100%,但是高吸收带宽不够大,只在440~640 nm

收稿日期: 2020-08-18; 修回日期: 2020-09-18; 录用日期: 2020-10-28

基金项目:国家自然科学基金(61307050,61701271)、山东省自然科学基金(ZR2016AM27)

^{*} E-mail: jiluch@126.com

的波长范围内有较高的吸收率。Ansari 等^[5]设计了 基于硅(Si),二氧化硅(SiO₂)和二硫化钼(MoS₂)单 层膜的光子晶体,在 0~60°入射角范围内均能实现 90%的吸收率,但需要较多层薄膜,器件过厚,制备 比较困难,并且吸收带宽不够大,高吸收波长范围仅 为100 nm 左右。与1D-PC 结构的吸收器相比,二 维光子晶体(2D-PC)结构的吸收器有明显的优 势[6-10],吸收带宽更宽,吸收率高,目能够广角吸收。 Wan 等[11]设计了金属-介质-金属超表面吸收器,上 层薄膜使用二维周期结构,在400~1200 nm 波长 范围内实现了接近90%的高吸收率,在该波长范围 以上吸收率较低,有较好的光谱选择性。刘开贤 等^[12]设计并计算了基于 GaAs 纳米阵列的 2D-PC 结构的太阳能电池,在200~900 nm 波长范围内, 吸收率可达 87.4%,最终优化后的功率转换效率为 17.6%。然而这些结构都无法实现全太阳光谱高吸 收。本文设计了一种含有抗反射层的 2D-PC 结构

第 41 卷 第 5 期/2021 年 3 月/光学学报

的太阳能吸收器,在 300~2500 nm 的波长范围内 有效吸收率高达 94.9%,可以覆盖全太阳光谱,并 且具有广角高吸收和偏振不敏感的特性。

2 结构设计

2.1 器件结构

在 2D-PC 中,一般采用谐振腔来确定高吸收带 宽的范围^[13],但从模拟得到的数据可以看出,在仅使 用谐振腔的情况下,所得到的结构整体吸收率不够 高,高吸收带宽范围不够大^[14]。实际所需的高吸收 带宽为 300~2500 nm,如图 1 理想吸收区域所示,根 据 AM1.5标准^[15],该频段能量占太阳辐射总能量的 99.13%,故该吸收区域可以定义为全太阳光谱。为了 提高吸收率并解决长波长处吸收率不够高的问题,在 2D-PC 的上层增加抗反射层。抗反射层的原理^[7]为

$$2np = \frac{(2t+1)}{2}\lambda_{\scriptscriptstyle 0}, \qquad (1)$$

式中:p 为抗反射层的厚度;n 为抗反射层材料的折 射率;t 为自然数, $t=0,1,2,3,\dots;\lambda_0$ 为t=0 时的 中心波长。令 λ 为入射光波长,当 $\lambda=(2t+1)\lambda_0$ ÷ (2b+1)(b 为自然数)时,薄膜显示抗反射特性;当 $\lambda=(2t+1)\lambda_0/(2b)(b$ 为自然数且 $b\neq0$),薄膜显示 增反射性。并且当t=0 时,(1)式所示的抗反射层 厚度 p 是满足透射性要求的最小厚度。由于本文 要求的高吸收带宽较大,抗反射层的厚度是在固定 的入射波长下计算得到的,且抗反射层对吸收器在 整个高吸收区域的吸收特性都会产生影响,因此在 $1.5\sim2.2 \ \mu m$ 波长范围内吸收率有所下降。

吸收器的结构如图 2 所示,以金属钨(W)为基 底,以四方晶格结构排列圆形空腔以构成 2D-PC 结 构,并且在圆形空腔中填充 GaAs,在填充之后的 2D- PC 板上表面增加一层 GaAs 抗反射层。整个结构仅 由含有填充材料的 2D-PC 板和抗反射层两部分组 成,制备较为简单。光子晶体的晶格常数为 A,抗反 射层厚度为 p,圆形空腔的高度为 d、半径为 R,衬底 的厚度为 50 nm,入射仰角为 θ ,入射方位角为 φ 。

2.2 计算方法

本文使用 COMSOL Multiphysics 仿真软件对 该 2D-PC 结构进行模拟。在图 2 所示结构中,底 部和顶部设置为周期性端口,边界条件设置为 Floquet 周期条件,即源和目标边界上的场值相差 一个相位因子,相位因子由波矢方向和边界的相 对距离确定,这样即可使用一个基本单元来模拟 周期性排列的结构。当入射角度为0时,吸收器 具有无偏振性,为了简化仿真计算,光源设置为横

第 41 卷 第 5 期/2021 年 3 月/光学学报

电(TE)模,光强设为1W。在有限元计算过程中, 随着网格的不断细化,划分出的单元变得越来越 小,求解的结果越来越接近真实解,但计算资源与 模拟时间也会增加。在本文吸收器的模拟计算过 程中发现,划分单元的精密程度对吸收特性的计 算结果无影响。为了保证仿真模拟结果对实际器 件的指导价值且能在现有计算资源基础上进行求 解,网格被划分为 97742 个单元,求解的自由度为 625966。由于钨基底的厚度足够大,可以阻止光 的透射^[16],因此吸收器的透射率 t=0,吸收率可以 表示为 a=1-r,其中 r 为反射率。为了更好地计 算、调整吸收器的几何参数以使吸收器具备全太 阳光谱高吸收的能力,本文计算的吸收谱均为吸 收器的吸收谱。

图 2 由 GaAs 和 W 组成的 2D-PC 的结构。(a) 侧视图;(b) 横截面图;(c) 俯视图 Fig. 2 2D-PC structure composed of GaAs and W. (a) Side view; (b) cross-sectional view; (c) top view

模拟制备流程如下:使用选择性区域外延 (SAE)^[17]法,首先在钨基底上刻蚀出周期性圆形空 腔,再将 GaAs填充到空腔中,最后在 2D-PC 板上 表面生长 GaAs抗反射层。SAE 法是一种模板法, 它包括自上而下(光刻)和自下而上(外延生长)方 法。该方法可实现纳米结构的精确制备,使实际器 件的晶格常数、空腔的半径与位置尽可能地接近设 计,并可调控 GaAs 柱的结构参数,如直径、间距和 长度。如图 3 所示,GaAs 的光学参数来自文献 [18]中的引入了展宽函数的 Ozaki 和 Adachi 光介 电函数模型,钨的光学参数来自文献[19]中的 Lorentz-Drude 光介电函数模型,两种函数模型可以 较为精确地描述材料的介电常数,保证模拟的准确 性和可指导性。

选择 GaAs 作为结构中的吸收材料,其电子带 隙为 1.4 eV。GaAs 的折射率 n 与吸收系数 k 如图 3(a)所示,可以看出,在 350~500 nm 波长范围内, GaAs 的折射率与吸收系数较大,对太阳能的吸收 效率较高。GaAs 的吸收波峰位于 550 nm 附近^[20], 由图 1 可以看出,该区域为太阳光辐射能量最大的 区域。钨作为结构的基底,具有硬度高、熔点高、高 温稳定性好等特点,常温下不受空气侵蚀,且在远红 外区具有高反射率,在长波长处发射率低^[21],可作 为结构的背反射器。

图 3 不同材料的折射率与吸收系数随波长的变化。(a) GaAs;(b)钨

Fig. 3 Refractive index and absorption coefficient of different materials versus wavelength. (a) GaAs; (b) tungsten

2.3 几何参数的分析

对于不填充 GaAs 的二维空腔结构,中心波长 λ_0 与 2D-PC 晶格常数 A 有关, $\lambda_0 = 2A^{[22]}$ 。在本文

中,空腔中填充 GaAs,通过仿真模拟得出,高吸收 带宽与晶格常数 A、GaAs 折射率、空腔半径 R 有直 接的关系。在吸收器的设计过程中,首先确定了 A

第 41 卷 第 5 期/2021 年 3 月/光学学报

研究论文

的值以实现全太阳光谱吸收,经过计算与仿真,确定 A=480 nm。

当圆柱腔的吸收质量因子(Q_{abs})和辐射率 (Q_{rad})相等时,可以在吸收曲线上得到吸收率峰值, 此时圆柱腔与外辐射是临界耦合的,实现了 Q 匹 配^[23]。空腔的半径 R 与高度 d 直接影响 Q_{rad} ,且空 腔的体积 $\pi R^2 d$ 与 Q_{abs} 密切相关,这意味着可以通 过调整 R, d 来预测吸收谱。在计算过程中,发现 空腔的高度 d 取较小值时,吸收谱的波动较大,吸 收曲线不平滑,在长波长处(1.8~2.5 μ m)吸收率 有所下降,出现了多个吸收峰。但 d/A 取较小值时 制造难度小,材料消耗少,考虑到制造难度与吸收器 性能,最终选定 d=2.2 μ m。

为了使吸收器具有全太阳光谱高吸收的能力, 同时满足吸收器高性能与实际器件制造难度低的需 要,应确定空腔半径 R 的最优值。研究空腔半径 R 对吸收器吸收率的影响,取半径 R 为 150,170, 190,210 nm,结果如图 4 所示。可以看出,随着空 腔半径 R 的逐渐变大,吸收器在高吸收带宽内的吸 收率持续增加,且高吸收带宽也有一定增加。吸收 谱出现了两个吸收峰,分别在 700 nm 和 1400 nm 波长处,且在 700 nm 处与各吸收谱的截止波长处 出现了 100%的完美吸收率。虽然空腔半径 R 越 大,该结构对入射光的吸收能力越强,但是过大的 R 会导致空腔壁过薄。当 R 取 210 nm 时,A-2R 过 小,导致制备困难、结构不稳定,考虑到吸收器性能、 制造工艺和实际结构,确定 R=190 nm。

图 4 仿真的吸收谱随 R 的变化

Fig. 4 Simulated absorption spectra for different R

最后,为了兼顾不同波长处的抗反射层性能,需 要确定抗反射层的厚度 p,研究了抗反射层厚度 p 对吸收器吸收率的影响,选取 p=111,158,165, 172 nm,结果如图 5 所示。可以看出,在高吸收波 长范围内出现了多个吸收峰,吸收峰处的抗反射层 显示抗反射特性。在 500~700 nm 波长范围内,厚 度 p 取 111 nm 和 172 nm 时的吸收器吸收率低于 p 取 158 nm 和 165 nm 时的吸收器吸收率。在 1400~2000 nm 波长范围内,四个不同厚度的结构 对应的吸收谱相似,且高吸收带宽范围没有发生变 化。由于 p 的变化会影响到整个高吸收带宽的范 围,仅通过吸收谱无法确定 p 的最佳值。定义有效 吸收率 \overline{a} 为

$$\bar{a} = \frac{\int a(\lambda) S(\lambda) d\lambda}{\int S(\lambda) d\lambda},$$
(2)

式中: $a(\lambda)$ 为吸收率关于波长的函数; $S(\lambda)$ 为AM1.5标准下的太阳辐射光谱。

图 5 仿真的吸收谱随 p 的变化

Fig. 5 Simulated absorption spectra for different p

表 1 给出了不同 p 对应的有效吸收率 \bar{a} ,可以 看出,当 p 为 165 nm 时, \bar{a} 较大。所以本文设计抗 反射层的结构时取 p=165 nm。

表 1 不同 p 下的有效吸收率

Table 1 Effective absorptivity for different p

p∕nm	111	158	165	172
ā	0.929	0.945	0.949	0.948

综上所述,综合考虑吸收器性能、实际器件与制 作工艺,确定该 2D-PC 结构吸收器的晶格常数 A =480 nm,空腔高度 d = 2200 nm,空腔半径 R =190 nm,抗反射层厚度 p = 165 nm。下面将研究吸 收器的偏振无关性、在正入射情况下的吸收能力、广 角吸收能力及电磁波的吸收情况以评估吸收器 性能。

3 计算与分析

3.1 光吸收能力的分析

为了评估吸收器在正入射情况下的光吸收能力,计算了几项重要的性能参数,表2为吸收器的完美吸收区域(a>90%)、高吸收区域(80% < a < 90%)、高吸收带宽内的最大吸收率与最小吸收率及

第 41 卷 第 5 期/2021 年 3 月/光学学报

有效吸收率。在太阳辐射最强的区域内,吸收器的 吸收率均在90%以上,在300~2500 nm 波长范围 内平均吸收率为92.53%,因此可以确定,吸收器具 有全太阳光谱高吸收能力。

计算了两种对比吸收器的吸收谱,除抗反射 层外,这两种吸收器的其他结构与本文设计的吸 收器一致,调整两种对比吸收器的几何参数,使两 种对比吸收器的高吸收波长范围与理想吸收区域 (300~2500 nm)一致。这两种吸收器分别为:含 有 TiO₂ 抗反射层且填充有 TiO₂ 的吸收器 A1 (A = 750 nm, R = 325 nm, p = 136 nm, d =5000 nm)、无抗反射层但填充有 GaAs 的吸收器 A2(A=480 nm,R=190 nm,d=2200 nm),并将 它们的吸收谱与本文设计的吸收器(A=480 nm, R=190 nm,p=165 nm,d=2200 nm)的吸收谱 进行对比,结果如图 6 所示。为了达到相同的高 吸收带宽(300~2500 nm),吸收器 A1 需要更大 的几何尺寸,这意味着吸收器成本的上升,且该吸 收器在太阳辐射能量最强区域的吸收率较低,有 效吸收率 \bar{a} 为 91.92%。吸收器 A2 的吸收率 为 60%~70%,有效吸收率 \bar{a} 为 61.27%,且在长 波长处吸收曲线有明显波动。本文设计的吸收器 的有效吸收率 \bar{a} 为 94.9%,可见其具有明显的 优势。

表 2 吸收器的性能参数

Table 2 Performance parameter	ers of absorber
-------------------------------	-----------------

Performance	Perfect absorption	High absorption	Maximum	Minimum	Effective
parameter	range $/\mu m$	range $/\mu m$	absorptivity	absorptivity	absorptivity
	0.3-1.0				
Value	1.2-1.6	1.7-2.1	100%	82.89%	94.9%
	2.2-2.6				

图 6 三种吸收器的模拟吸收谱

Fig. 6 Simulated absorption spectra of three absorbers

为了更好地利用吸收器吸收的光能,计算了吸 收器各部分的吸收率,以确定吸收器可应用的方向, 结果如图 7 所示。可以看出,在短波长处,入射光被 抗反射层吸收。在 500~900 nm 波长范围内,部分 入射光被 GaAs 柱吸收,但柱体吸收率较低,这是因 为 GaAs 柱之间的散射被基底钨吸收,陷光作用减 弱。由图 3 可以看出,1000~2500 nm 波长范围内, 金属钨的消光系数较大,而 GaAs 的消光系数几乎 为零,消光系数直接影响吸收率,入射光被基底钨吸 收。通过分析发现,在本文设计的结构中,对太阳能 吸收贡献最大的是钨基底,该吸收器更适用于光热 转换系统、热光伏转换系统或其他光能转换系统。 相较于文献[7]中热光伏转换系统中的吸收器,本文 所设计的吸收器的高吸收范围由 300~2000 nm(根 据 AM1.5 标准,该频段能量占太阳辐射总能量的 95.8%)扩展到 300~2500 nm(根据 AM1.5 标准, 该频段能量占太阳辐射总能量的 99.13%),同时有 效吸收率增大了 0.1%,器件厚度减少了 300 nm, 制备难度降低,材料消耗减少。若将吸收器应用于 光电转换系统,理论上可能存在功率转换效率较低 的问题,需要进行实际器件验证。进一步优化并更 换基底材料,使 GaAs 柱之间的散射介质吸收率为 零, GaAs 柱的陷光作用得到增强。

图 7 吸收器中各部分的吸收率 Fig. 7 Absorptivity of each part in absorber

3.2 广角吸收能力的分析

为了评估吸收器的广角吸收能力,计算了不同 角度下吸收器的吸收率。大多数国家位于赤道 0° 到北纬 50°区间,太阳光的入射仰角 θ 主要在 0°~ 50°范围内,应在此范围内考量吸收器的广角吸收能 力^[24]。图 8 所示为模拟吸收谱随入射仰角和波长 的变化。可以看出,随着入射仰角的增加,高吸收带

第 41 卷 第 5 期/2021 年 3 月/光学学报

宽范围内的吸收率持续减小,这是因为空腔内存在 的衍射损耗^[13]降低了吸收率。衍射由光栅方程 控制:

$$A(\sin\theta + \sin\theta_m) = m\lambda, \ m = \pm 1, \pm 2, \pm 3, \cdots,$$
(3)

式中: θ_m 为存在m阶衍射的角度。

当 θ 大于 θ_i 时,空腔内出现衍射。 θ_i 可表示为

随着 λ 的增大, θ_i 变大, $\theta > \theta_i$ 时吸收率明显减 小。因此,为了实现更大的广角吸收角度,晶格常数 $A \ {
m oc} \ {
m style } \Lambda$ 由图 8 可以看出,当 0 < θ < 50°时,吸 收率较高,但随着入射仰角的增大,吸收率持续减 小。当光源为 TE 模且 θ = 50°时,有效吸收率 \overline{a} 为 89.16%,当光源为横磁(TM)模且 θ = 50°时,有效 吸收率 \overline{a} 为 90.13%。由此可见,本文设计的吸收 器具有良好的广角吸收能力和偏振无关性。

3.3 电场分布的分析

研究电场分布以观察吸收器对电磁波的吸收情况,仿真计算了波长分别为 700,1100,1400,2500, 5000 nm 时的电场分布,结果如图 9 所示。可以看出,在高吸收区(λ=300~2500 nm),电磁波被吸收器吸收,吸收机制主要为抗反射层作用、空腔的共振和吸收介质 GaAs 的吸收。在 5000 nm 波长处,电磁波几乎无法进入吸收器内部。其中 700,1400, 2500 nm 波长处为高吸收区的三个吸收峰, 1100 nm 波长处为高吸收区内的吸收谷。在抗反射层的作用下,电磁波进入到腔体,并在谐振腔共振^[7] 及吸收介质吸收的共同作用下被吸收器吸收。 700 nm 波长处的电磁波主要分布在腔体中, 1400 nm 处的电磁波集中在抗反射层底部与腔体的 顶部。在 1100 nm 波长处,由于抗反射层显示增反 射特性,吸收器的吸收率较小。在 2500 nm 波长 处,吸收率接近 100%,电磁波被腔体完美吸收,电 磁波进入到腔的底部,电场呈梯度分布,这是因为谐 振腔共振,电磁波随着腔内传输深度的增大而不断 衰减。在 5000 nm 波长处,由于钨在长波长处的高 反射率,电磁波集中在抗反射层内,几乎无法被腔体 吸收,吸收率极低。

图 9 不同波长处的电场分布情况。(a) 700 nm;(b) 1100 nm;(c) 1400 nm;(d) 2500 nm;(e) 5000 nm Fig. 9 Electric field distributions at different wavelengths. (a) 700 nm; (b) 1100 nm; (c) 1400 nm; (d) 2500 nm; (e) 5000 nm

3.4 结构误差的分析

为了保证仿真模拟结果对实际器件制造和应用 的指导性,考虑实际加工误差,模拟计算了加工中存 在的结构公差对吸收率的影响。在本文设计的吸收 器中,由于制备工艺和吸收器结构的影响,GaAs柱 的半径 R 及抗反射层的厚度 p 最有可能出现加工 误差,预计误差应在±5 nm 范围内。分别计算了以 下四种加工误差情况:误差 1(R = 190 nm, p =160 nm)、误差 2(R=190 nm, p=170 nm)、误差 3 (R = 185 nm, p = 165 nm)和误差 4(R = 195 nm, *▶*=165 nm)。不同加工误差情况下吸收器及所设 计的吸收器的吸收谱如图 10 所示,可以看出,四种 误差情况对应的有效吸收率 \overline{a} 分别为 94.8%, 94.96%, 94.56%和95.29%, 所设计吸收器的无误 差有效吸收率为 94.9%, a 的最大误差为 0.39%, 可以看出加工误差对吸收器的性能影响非常小,吸 收器的制备难度较低。

4 结 论

以金属钨为基底材料,以四方晶格结构的圆形 空腔为 2D-PC 结构,设计了空腔中填充有 GaAs 的 含有抗反射层的太阳能吸收器。在 300~2500 nm 波长范围内,该吸收器具有高达 94.9%的有效吸收 率,高吸收带宽内的吸收率最小值为 82.9%,在 700 nm 和 2500 nm 波长处有接近 100%的完美吸 收率,吸收器具有全太阳光谱高吸收的能力。在入 射仰角为 50°的情况下,当入射光为 TE 模时, \bar{a} = 89.16%,当入射光为 TM 模时, \bar{a} = 90.13%,吸收 器具有较高的吸收率,所设计的吸收器具有良好的 偏振无关性和广角吸收能力。研究结果为太阳能吸 收器的设计提供了理论参考,有助于推动高性能吸 收器的发展。

第 41 卷 第 5 期/2021 年 3 月/光学学报

参考文献

- [1] Liu Z Q, Liu G Q, Huang Z P, et al. Ultrabroadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface [J]. Solar Energy Materials and Solar Cells, 2018, 179: 346-352.
- [2] Fang H M, Tian M, Chang S Q, et al. Optical absorption properties in one-dimensional graphene-based photonic crystals [J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 589-593.
 房慧敏,田敏,常诗琦,等.一维石墨烯基光子晶体 光吸收特性研究[J]. 量子电子学报, 2018, 35(5): 589-593.
- [3] Wu Y, Hu E T, Wang J, et al. Design and optimization of multilayered metal/dielectric film structure for solar photothermal conversion[J]. Acta Optica Sinica, 2020, 40(14): 1431001.
 吴莹,胡二涛,王静,等.金属/介质多层膜基太阳 能光热转换薄膜结构的设计与优化[J].光学学报, 2020, 40(14): 1431001.
- [4] Luo J, Lai Y. Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property [J]. Optics Express, 2019, 27(11): 15800.
- [5] Ansari N, Mohebbi E. Broadband and high absorption in Fibonacci photonic crystal including MoS₂ monolayer in the visible range [J]. Journal of Physics D: Applied Physics, 2018, 51(11): 115101.
- [6] Chen P Z, Yu L Y, Niu P J, et al. Numerical study on conical two-dimensional photonic crystal in silicon thin-film solar cells[J]. Acta Physica Sinica, 2018, 67(2): 028802.
 陈培专,于莉媛,牛萍娟,等. 锥形二维光子晶体太

阳电池数值模拟[J].物理学报,2018,67(2): 028802.

- [7] Niu X Y, Qi D, Wang X, et al. Improved broadband spectral selectivity of absorbers/emitters for solar thermophotovoltaics based on 2D photonic crystal heterostructures [J]. Journal of the Optical Society of America A, 2018, 35(11): 1832-1838.
- [8] Li X, Zhao Y H, Peng H, et al. Solar cells with surface modified Cs-doped ZnO nanorod array as electron transporting layer [J]. Acta Optica Sinica, 2018, 38(7): 0731001.
 李雪,赵宇涵,彭辉,等.以表面修饰铯掺杂 ZnO 纳 米柱阵列为电子传输层的太阳能电池 [J].光学学报, 2018, 38(7): 0731001.
- [9] Zhu L, Wang Y, Xiong G, et al. Design and absorption characteristics of broadband nanometamaterial solar absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.

第 41 卷 第 5 期/2021 年 3 月/光学学报

研究论文

朱路, 王杨, 熊广, 等. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37 (9): 0923001.

- [10] Gomard G, Drouard E, Letartre X, et al. Twodimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells [J]. Journal of Applied Physics, 2010, 108(12): 123102.
- [11] Wan C L, Ho Y, Nunez-Sanchez S, et al. A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications [J]. Nano Energy, 2016, 26: 392-397.
- [12] Liu K X, Lin J H, Shi J H, et al. Design and optimization of GaAs nanowire array solar cells[J]. Acta Photonica Sinica, 2016, 45(4): 0425002.
 刘开贤,蔺吉虹,史建华,等. GaAs 纳米线阵列太阳能电池的设计与优化[J]. 光子学报, 2016, 45 (4): 0425002.
- [13] Yeng Y X, Chou J B, Rinnerbauer V, et al. Omnidirectional wavelength selective emitters/ absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals[J]. Proceedings of SPIE, 2014, 9170: 91700X.
- [14] Rinnerbauer V, Lenert A, Bierman D M, et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics [J]. Advanced Energy Materials, 2014, 4(12): 1400334.
- [15] ASTM International. Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface [S]. West Conshohocken, PA:[s.n.], 2020.
- [16] Tian Y P, Qian L J, Liu X J, et al. Hightemperature and abrasion resistant selective solar absorber under ambient environment [EB/OL]. (2020-05-20) [2020-06-16]. https://arxiv.org/abs/ 2005.14305.

- Li Z, Wenas Y C, Fu L, et al. Influence of electrical design on core-shell GaAs nanowire array solar cells
 [J]. IEEE Journal of Photovoltaics, 2015, 5(3): 854-864.
- [18] Rakić A D, Majewski M L. Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi's model [J]. Journal of Applied Physics, 1996, 80(10): 5909-5914.
- [19] Rakić A D, Djurišić A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37 (22): 5271-5283.
- [20] Jiang C Y, Wang X M, Liu H N, et al. Using ultrathin GaAs photonic crystal absorbing layer to improve solar cell absorption efficiency [J]. Journal of Synthetic Crystals, 2018, 47(12): 2446-2451, 2456.
 姜澄溢, 王贤明, 刘浩楠, 等. 采用超薄的 GaAs 光子晶体吸收层提高太阳能电池的吸收效率[J].人工晶体学报, 2018, 47(12): 2446-2451, 2456.
- [21] Chou J B, Yeng Y X, Lenert A, et al. Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications [J]. Optics Express, 2014, 22 (S1): A144-A154.
- [22] Sai H, Kanamori Y, Yugami H. High-temperature resistive surface grating for spectral control of thermal radiation[J]. Applied Physics Letters, 2003, 82(11): 1685-1687.
- [23] Ghebrebrhan M, Bermel P, Yeng Y X, et al. Tailoring thermal emission via Q matching of photonic crystal resonances [J]. Physical Review A, 2011, 83(3): 033810.
- [24] Li H. Research on physical mechanism of selective solar absorbers [D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
 李辉.光谱选择性太阳能吸收器的物理机理研究 [D].北京:北京邮电大学, 2019.